By Topic

Lower and Upper Bounds for Linkage Discovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung-Soon Choi ; Random Graph Res. Center, Yonsei Univ., Seoul ; Kyomin Jung ; Byung-Ro Moon

For a real-valued function f defined on {0,1}n , the linkage graph of f is a hypergraph that represents the interactions among the input variables with respect to f . In this paper, lower and upper bounds for the number of function evaluations required to discover the linkage graph are rigorously analyzed in the black box scenario. First, a lower bound for discovering linkage graph is presented. To the best of our knowledge, this is the first result on the lower bound for linkage discovery. The investigation on the lower bound is based on Yao's minimax principle. For the upper bounds, a simple randomized algorithm for linkage discovery is analyzed. Based on the Kruskal-Katona theorem, we present an upper bound for discovering the linkage graph. As a corollary, we rigorously prove that O(n 2logn) function evaluations are enough for bounded functions when the number of hyperedges is O(n), which was suggested but not proven in previous works. To see the typical behavior of the algorithm for linkage discovery, three random models of fitness functions are considered. Using probabilistic methods, we prove that the number of function evaluations on the random models is generally smaller than the bound for the arbitrary case. Finally, from the relation between the linkage graph and the Walsh coefficients, it is shown that, for bounded functions, the proposed bounds are eventually the bounds for finding the Walsh coefficients.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:13 ,  Issue: 2 )