By Topic

Improving Face Recognition via Narrowband Spectral Range Selection Using Jeffrey Divergence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hong Chang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN ; Yi Yao ; Andreas Koschan ; Besma Abidi
more authors

In order to achieve improved recognition performance in comparison with conventional broadband images, this paper addresses a new method that automatically specifies the optimal spectral range for multispectral face images according to given illuminations. The novelty of our method lies in the introduction of a distribution separation measure and the selection of the optimal spectral range by ranking these separation values. The selected spectral ranges are consistent with the physics analysis of the multispectral imaging process. The fused images from these chosen spectral ranges are verified to outperform the conventional broadband images by 3%-20%, based on a variety of experiments with indoor and outdoor illuminations using two well-recognized face-recognition engines. Our discovery can be practically used for a new customized sensor design associated with given illuminations for improved face-recognition performance over the conventional broadband images.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:4 ,  Issue: 1 )