By Topic

Fully Monolithic Cellular Buck Converter Design for 3-D Power Delivery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jian Sun ; Rensselaer Polytech. Inst., Troy, NY ; Giuliano, D. ; Devarajan, S. ; Jian-Qiang Lu
more authors

A fully monolithic interleaved buck dc-dc point-of-load (PoL) converter has been designed and fabricated in a 0.18-mm SiGe BiCMOS process. Target application of the design is 3-D power delivery for future microprocessors, in which the PoL converter will be vertically integrated with the processor using wafer-level 3-D interconnect technologies. Advantages of 3-D power delivery over conventional discrete voltage regulator modules (VRMs) are discussed. The prototype design, using two interleaved buck converter cells each operating at 200 MHz switching frequency and delivering 500 mA output current, is discussed with a focus on the converter power stage and control loop to highlight the tradeoffs unique to such high-frequency, monolithic designs. Measured steady-state and dynamic responses of the fabricated prototype are presented to demonstrate the ability of such monolithic converters to meet the power delivery requirements of future processors.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:17 ,  Issue: 3 )