By Topic

Intelligent denoising technique for spatial video denoising for real-time applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rasha Orban Mahmoud ; Nile Institute of Commerce & Computer Technology, Mansoura, Egypt ; Mohamed T. Faheem ; Amany Sarhan

With the wide spread of video usage in many fields of our lives, it becomes very important to develop new techniques for video denoising. Spatial video denoising using wavelet transform has been the focus of the current researches as it requires less computation and more suitable for real-time applications. Two specific techniques for spatial video denoising using wavelet transform are considered in this work: 2D Discrete Wavelet Transform (2D DWT) and 2D Dual Tree Complex Wavelet Transform (2D DTCWT). Each of these techniques has its advantages and disadvantages. The first technique gives less quality at high levels of noise but consumes less time while the second gives high quality video while consuming long. In this work, we introduce an intelligent denoising system that makes a tradeoff between the quality of the denoised video and the time required for denoising. The system first estimates the noise level in the video frame then accordingly chooses the proper of the two denoising techniques to apply on the frame. The simulation results show that the proposed system is more suitable for real-time applications where the time is critical while giving high quality videos especially at low to moderate levels of noise.

Published in:

Computer Engineering & Systems, 2008. ICCES 2008. International Conference on

Date of Conference:

25-27 Nov. 2008