By Topic

New strategies for assigning real-time tasks to multiprocessor systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Burchard, A. ; Dept. of Math., Princeton Univ., NJ, USA ; Liebeherr, J. ; Yingfeng Oh ; Son, S.H.

Optimal scheduling of real-time tasks on multiprocessor systems is known to be computationally intractable for large task sets. Any practical scheduling algorithm for assigning real-time tasks to a multiprocessor system presents a trade-off between its computational complexity and its performance. In this study, new schedulability conditions are presented for homogeneous multiprocessor systems where individual processors execute the rate-monotonic scheduling algorithm. The conditions are used to develop new strategies for assigning real-time tasks to processors. The performance of the new strategies is shown to be significantly better than suggested by the existing literature. Under the realistic assumption that the load of each real-time task is small compared to the processing speed of each processor, it is shown that the processors can be almost fully utilized

Published in:

Computers, IEEE Transactions on  (Volume:44 ,  Issue: 12 )