By Topic

Reconfigurable energy efficient near threshold cache architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ronald G. Dreslinski ; University of Michigan - Ann Arbor, USA ; Gregory K. Chen ; Trevor Mudge ; David Blaauw
more authors

Battery life is an important concern for modern embedded processors. Supply voltage scaling techniques can provide an order of magnitude reduction in energy. Current commercial memory technologies have been limited in the degree of supply voltage scaling that can be performed if they are to meet yield and reliability constraints. This has limited designers from exploring the near threshold operating regions for embedded processors. Summarizing prior work we show how proper sizing of memory cells can guarantee that the memory cell reliability in the near threshold supply voltage region matches that of a standard memory cell. However, this robustness comes with a significant area cost. We show how to employ these cells to build cache architectures that greatly reduce energy consumption. We propose an embedded processor based on these new cache architectures that operates in a low power mode, with minimal impact on full performance runtime. The proposed cache uses near threshold tolerant cache ways to reduce access energy combined with traditional cache ways to maintain performance. The access policy of the cache ways is then dynamically reconfigured to obtain energy efficient performance while minimally impacting the high performance mode runtime. Using near threshold cache architectures we show an energy reduction of 53% over a traditional filter cache. For the MIBench embedded benchmarks we show on average an 86% (7.3times) reduction in energy while in low power (10 MHz) mode with only an average 2% increase in runtime in high performance (400 MHz) mode. And for SpecInt applications we show a 77% (4.4times) reduction in energy in low power mode with only an average 4.8% increase in runtime for high performance mode. In addition we show that these trends hold from 130 nm to 45 nm technology nodes.

Published in:

2008 41st IEEE/ACM International Symposium on Microarchitecture

Date of Conference:

8-12 Nov. 2008