By Topic

Token tenure: PATCHing token counting using directory-based cache coherence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arun Raghavan ; Department of Computer and Information Science, University of Pennsylvania, Philadelphia, USA ; Colin Blundell ; Milo M. K. Martin

Traditional coherence protocols present a set of difficult tradeoffs: the reliance of snoopy protocols on broadcast and ordered interconnects limits their scalability, while directory protocols incur a performance penalty on sharing misses due to indirection. This work introduces PATCH (Predictive/Adaptive Token Counting Hybrid), a coherence protocol that provides the scalability of directory protocols while opportunistically sending direct requests to reduce sharing latency. PATCH extends a standard directory protocol to track tokens and use token counting rules for enforcing coherence permissions. Token counting allows PATCH to support direct requests on an unordered interconnect, while a mechanism called token tenure uses local processor timeouts and the directorypsilas per-block point of ordering at the home node to guarantee forward progress without relying on broadcast. PATCH makes three main contributions. First, PATCH introduces token tenure, which provides broadcast-free forward progress for token counting protocols. Second, PATCH deprioritizes best-effort direct requests to match or exceed the performance of directory protocols without restricting scalability. Finally, PATCH provides greater scalability than directory protocols when using inexact encodings of sharers because only processors holding tokens need to acknowledge requests. Overall, PATCH is a ldquoone-size-fits-allrdquo coherence protocol that dynamically adapts to work well for small systems, large systems, and anywhere in between.

Published in:

2008 41st IEEE/ACM International Symposium on Microarchitecture

Date of Conference:

8-12 Nov. 2008