By Topic

Dispersion Relation and Loss of Subwavelength Confined Mode of Metal-Dielectric-Gap Optical Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fujii, M. ; Inst. of High-Freq. & Quantum Electron. (IHQ), Univ. of Karlsruhe, Karlsruhe ; Leuthold, J. ; Freude, W.

We have investigated the dispersion relation of a novel metal-dielectric-gap optical waveguide. This structure confines the optical field strongly in the gap region between metals and dielectric materials, and its size can be reduced to less than the wavelength of the transmitted light. In addition, the propagation length of light extends much greater than that of the surface plasmon modes on metal surfaces. We show that this mode of propagation has a cut-off at zero wavenumber, and that it is hollow-waveguide-like for small wavenumbers, while it approaches a surface-plasmon-like mode for large wavenumbers. A typical propagation length at around the communication wavelength is 10-20 mum, and optical fields are confined into an approximately 100 times 200 nm2 cross section.

Published in:

Photonics Technology Letters, IEEE  (Volume:21 ,  Issue: 6 )