Cart (Loading....) | Create Account
Close category search window
 

Effect of Emission From the Moon on Remote Sensing of Sea Surface Salinity: An Example With the Aquarius Radiometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dinnat, E.P. ; Goddard Earth Sci. & Technol. Center, Univ. of Maryland, Baltimore, MD ; Abraham, S. ; Le Vine, D.M. ; de Matthaeis, P.
more authors

This letter describes the effect of thermal emission from the Moon on remote sensing of sea surface salinity from space. In most cases, radiation from the Moon is negligible; however, at several times during the lunar cycle, it is possible for radiation to be reflected from the Earth's surface into the main beam of the radiometer antennas. The signal in such cases can be important because of the high radiometric accuracy required to monitor salinity. Examples are presented using the Aquarius orbit and antennas for both smooth and rough ocean surfaces.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 2 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.