Cart (Loading....) | Create Account
Close category search window
 

A Multitask Learning Model for Online Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ozawa, S. ; Grad. Sch. of Eng., Kobe Univ., Kobe ; Roy, A. ; Roussinov, D.

This paper presents a new learning algorithm for multitask pattern recognition (MTPR) problems. We consider learning multiple multiclass classification tasks online where no information is ever provided about the task category of a training example. The algorithm thus needs an automated task recognition capability to properly learn the different classification tasks. The learning mode is ldquoonlinerdquo where training examples for different tasks are mixed in a random fashion and given sequentially one after another. We assume that the classification tasks are related to each other and that both the tasks and their training examples appear in random during ldquoonline training.rdquo Thus, the learning algorithm has to continually switch from learning one task to another whenever the training examples change to a different task. This also implies that the learning algorithm has to detect task changes automatically and utilize knowledge of previous tasks for learning new tasks fast. The performance of the algorithm is evaluated for ten MTPR problems using five University of California at Irvine (UCI) data sets. The experiments verify that the proposed algorithm can indeed acquire and accumulate task knowledge and that the transfer of knowledge from tasks already learned enhances the speed of knowledge acquisition on new tasks and the final classification accuracy. In addition, the task categorization accuracy is greatly improved for all MTPR problems by introducing the reorganization process even if the presentation order of class training examples is fairly biased.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 3 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.