Cart (Loading....) | Create Account
Close category search window
 

Fair Class-Based Downlink Scheduling with Revenue Considerations in Next Generation Broadband Wireless Access Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Al-Manthari, B. ; Telecommun. Res. Lab., Queen''s Univ., Kingston, ON ; Hassanein, H. ; Ali, N.A. ; Nasser, N.

The success of emerging Broadband Wireless Access Systems (BWASs) will depend, among other factors, on their ability to manage their shared wireless resources in the most efficient way. This is a complex task due to the heterogeneous nature, and hence, diverse Quality of Service (QoS) requirements of different applications that these systems support. Therefore, QoS provisioning is crucial for the success of such wireless access systems. In this paper, we propose a novel downlink packet scheduling scheme for QoS provisioning in BWASs. The proposed scheme employs practical economic models through the use of novel utility and opportunity cost functions to simultaneously satisfy the diverse QoS requirements of mobile users and maximize the revenues of network operators. Unlike existing schemes, the proposed scheme is general and can support multiple QoS classes with users having different QoS and traffic demands. To demonstrate its generality, we show how the utility function can be used to support three different types of traffic, namely best-effort traffic, traffic with minimum data rate requirements, and traffic with maximum packet delay requirements. Extensive performance analysis is carried out to show the effectiveness and strengths of the proposed packet scheduling scheme.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.