By Topic

Privacy-Preserving Tuple Matching in Distributed Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yingpeng Sang ; Sch. of Comput. Sci., Univ. of Adelaide, Adelaide, SA, Australia ; Hong Shen ; Hui Tian

We address the problems of privacy-preserving duplicate tuple matching (PPDTM) and privacy-preserving threshold attributes matching (PPTAM) in the scenario of a horizontally partitioned database among N parties, where each party holds a private share of the database's tuples and all tuples have the same set of attributes. In PPDTM, each party determines whether its tuples have any duplicate on other parties' private databases. In PPTAM, each party determines whether all attribute values of each tuple appear at least a threshold number of times in the attribute unions. We propose protocols for the two problems using additive homomorphic cryptosystem based on the subgroup membership assumption, e.g., Paillier's and ElGamal's schemes. By analysis on the total numbers of modular exponentiations, modular multiplications and communication bits, with a reduced computation cost which dominates the total cost, by trading off communication cost, our PPDTM protocol for the semihonest model is superior to the solution derivable from existing techniques in total cost. Our PPTAM protocol is superior in both computation and communication costs. The efficiency improvements are achieved mainly by using random numbers instead of random polynomials as existing techniques for perturbation, without causing successful attacks by polynomial interpolations. We also give detailed constructions on the required zero-knowledge proofs and extend our two protocols to the malicious model, which were previously unknown.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 12 )