By Topic

Join of Multiple Data Streams in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xianjin Zhu ; Microsoft, Inc., Seattle, WA, USA ; Gupta, H. ; Bin Tang

Sensor networks are multihop wireless networks of resource-constrained sensor nodes used to realize high-level collaborative sensing tasks. To query or access data generated by the sensor nodes, the sensor network can be viewed as a distributed database. In this paper, we develop algorithms for communication-efficient implementation of join of multiple (two or more) data streams in a sensor network. The distributed implementation of join in sensor networks is particularly challenging due to unique characteristics of the sensor networks such as limited memory and battery energy on individual nodes, arbitrary and dynamic network topology, multihop communication, and unreliable infrastructure. One of our proposed approaches, viz., the perpendicular approach (PA), is load balanced, and in fact, incurs near-optimal communication cost for the special case of binary joins in grid networks under the assumption of uniform generation of tuples across the network. We compare the performance of our designed approaches through extensive simulations on the ns2 simulator, and show that PA results in substantially prolonging the network lifetime compared to other approaches, especially for joins involving spatial constraints.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 12 )