Cart (Loading....) | Create Account
Close category search window
 

A Novel Heuristic for Local Multiple Alignment of Interspersed DNA Repeats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Treangen, T.J. ; Inst. Pasteur, UPMC Univ., Paris ; Darling, A.E. ; Achaz, G. ; Ragan, M.A.
more authors

Pairwise local sequence alignment methods have been the prevailing technique to identify homologous nucleotides between related species. However, existing methods that identify and align all homologous nucleotides in one or more genomes have suffered from poor scalability and limited accuracy. We propose a novel method that couples a gapped extension heuristic with an efficient filtration method for identifying interspersed repeats in genome sequences. During gapped extension, we use the MUSCLE implementation of progressive global multiple alignment with iterative refinement. The resulting gapped extensions potentially contain alignments of unrelated sequence. We detect and remove such undesirable alignments using a hidden Markov model (HMM) to predict the posterior probability of homology. The HMM emission frequencies for nucleotide substitutions can be derived from any time-reversible nucleotide substitution matrix. We evaluate the performance of our method and previous approaches on a hybrid data set of real genomic DNA with simulated interspersed repeats. Our method outperforms a related method in terms of sensitivity, positive predictive value, and localizing boundaries of homology. The described methods have been implemented in freely available software, Repeatoire, available from: http://wwwabi.snv.jussieu.fr/public/Repeatoire.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:6 ,  Issue: 2 )

Date of Publication:

April-June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.