By Topic

Superellipse Fitting for the Recovery and Classification of Mine-Like Shapes in Sidescan Sonar Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dura, E. ; Inst. of Robot., Univ. de Valencia, Valencia ; Bell, J. ; Lane, D.

Mine-like object classification from sidescan sonar images is of great interest for mine counter measure (MCM) operations. Because the shadow cast by an object is often the most distinct feature of a sidescan image, a standard procedure is to perform classification based on features extracted from the shadow. The classification can then be performed by extracting features from the shadow and comparing this to training data to determine the object. In this paper, a superellipse fitting approach to classifying mine-like objects in sidescan sonar images is presented. Superellipses provide a compact and efficient way of representing different mine-like shapes. Through variation of a simple parameter of the superellipse function different shapes such as ellipses, rhomboids, and rectangles can be easily generated. This paper proposes a classification of the shape based directly on a parameter of the superellipse known as the squareness parameter. The first step in this procedure extracts the contour of the shadow given by an unsupervised Markovian segmentation algorithm. Afterwards, a superellipse is fitted by minimizing the Euclidean distance between points on the shadow contour and the superellipse. As the term being minimized is nonlinear, a closed-form solution is not available. Hence, the parameters of the superellipse are estimated by the Nelder-Mead simplex technique. The method was then applied to sidescan data to assess its ability to recover and classify objects. This resulted in a recovery rate of 70% (34 of the 48 mine-like objects) and a classification rate of better than 80% (39 of the 48 mine-like objects).

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:33 ,  Issue: 4 )