By Topic

Mechanical Modeling of Biological Cells in Microinjection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Youhua Tan ; Control & Mechatron. Group, Univ. of Sci. & Technol. of China, Suzhou, China ; Dong Sun ; Wenhao Huang ; Shuk Han Cheng

Microinjection is an effective technique to introduce foreign materials into a biological cell. Although some semi-automatic and fully-automatic microinjection systems have been developed, a full understanding of the mechanical response of biological cells to injection operation remains deficient. In this paper, a new mechanical model based on membrane theory is proposed. This model establishes a relationship between the injection force and the deformation of biological cells with the quasi-static equilibrium equations, which are solved by the Runge-Kutta numerical method. Based on this model, other mechanical responses can also be inferred, such as the effect of the injector radius, the membrane stress and tension distribution, internal cell pressure, and the deformed cell shape. To verify the proposed model, experiments are performed on microinjection of zebrafish embryos at different developmental stages and medaka embryos at the blastula stage. It is demonstrated that the modeling results agree well with the experimental data, which shows that the proposed model can be used to estimate the mechanical properties of cell biomembranes. (In this paper, biomembrane refers to the membrane-like structures enveloping cells).

Published in:

NanoBioscience, IEEE Transactions on  (Volume:7 ,  Issue: 4 )