Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Financial Market Trading System With a Hierarchical Coevolutionary Fuzzy Predictive Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haoming Huang ; Centre for Comput. Intell., Nanyang Technol. Univ., Nanyang ; Pasquier, M. ; Chai Quek

Financial market prediction and trading presents a challenging task that attracts great interest from researchers and investors because success may result in substantial rewards. This paper describes the application of a hierarchical coevolutionary fuzzy system called HiCEFS for predicting financial time series. A novel financial trading system using HiCEFS as a predictive model and employing a prudent trading strategy based on the price percentage oscillator (PPO) is proposed. In order to construct an accurate predictive model, a form of generic membership function named irregular shaped membership function (ISMF) is employed and a hierarchical coevolutionary genetic algorithm (HCGA) is adopted to automatically derive the ISMFs for each input feature in HiCEFS. With the accurate prediction from HiCEFS and the prudent trading strategy, the proposed system outperforms the simple buy-and-hold strategy, the trading system without prediction and the trading system with other predictive models (EFuNN, DENFIS and RSPOP) on real-world financial data.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:13 ,  Issue: 1 )