By Topic

Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Youngcheol Chae ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul ; Gunhee Han

An operational transconductance amplifier (OTA) is a major building block and consumes most of the power in switched-capacitor (SC) circuits, but it is difficult to design low-voltage OTAs in scaled CMOS technologies. Instead of using an OTA, this paper proposes an inverter-based SC circuit and its application to low-voltage, low-power delta-sigma (DeltaSigma) modulators. Detailed analysis and design optimizations are also provided. Three inverter-based DeltaSigma modulators are implemented for an implantable pacemaker, a CMOS image sensor, and an audio codec. The modulator-I for an implantable pacemaker achieves 65-dB peak-SNDR for 120-Hz bandwidth consuming 0.73 muW with 1.5 V supply. The modulator-II for a CMOS image sensor implemented with 320-channel parallel ADC architecture achieves 63-dB peak-SNDR for 8-kHz bandwidth consuming 5.6 muW for each channel with 1.2-V supply. The modulator-III for an audio codec achieves 81-dB peak-SNDR with 20-kHz bandwidth consuming 36 muW with 0.7-V supply. The prototype DeltaSigma modulators achieved high power efficiency maintaining sufficient performances for practical applications.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:44 ,  Issue: 2 )