By Topic

A RF to DC Voltage Conversion Model for Multi-Stage Rectifiers in UHF RFID Transponders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raymond E. Barnett ; Texas Instrum. Inc., Dallas, TX ; Jin Liu ; Steve Lazar

This paper presents a RF to DC conversion model for multi-stage rectifiers in UHF RFID transponders. An equation relating the RF power available from the antenna to the DC output voltage produced by a multi-stage rectifier is presented. The proposed model includes effects of the nonlinear forward voltage drop in diodes and impedance matching conditions of the antenna to rectifier interface. Fundamental frequency impedance approximation is used to analyze the resistance of rectifying diodes; parasitic resistive loss components are also included in the analysis of rectifier input resistance. The closed form equation shows insights into design parameter tradeoffs, such as power available from the antenna, antenna radiation resistance, the number of diodes, DC load current, parasitic resistive loss components, diode and capacitor sizes, and frequency of operation. Therefore, it enables the optimization of rectifier parameters for impedance matching with a low-cost printed antenna and shunt tuning inductor, in order to improve the RF to DC conversion efficiency and the operational distance of UHF RFID transponders. Three diode doublers and three multistage rectifiers were fabricated in a 130 nm CMOS process with custom no-mask added Schottky diodes. Measurements of the test IC are in good agreement with the proposed model.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:44 ,  Issue: 2 )
IEEE RFID Virtual Journal