By Topic

Cement rotary kiln control: A supervised adaptive model predictive approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Javaneh Ziatabari ; Department of Electrical Engineering, University of Trabiat Modares, Tehran, Iran ; Alireza Fatehi ; Mohamad T. H. Beheshti

Considering the need of an advanced process control in cement industry, this paper presents an adaptive model predictive algorithm to control a white cement rotary kiln. As any other burning process, the control scenario is to expect the controller to regulate the temperature and the period of baking a fixed quantity of raw material as desired, as well as to have the concentration of the combustion gases under control. To achieve these goals, this work presents a strategy which includes multivariable online identification of the kiln process and a constrained generalized predictive controller. An MLP neural network model derived from real plant data of Saveh cement factory in Iran is used as the kiln process simulator. The control efforts are made taken into account the operating constraints. At last the proposed control strategy is modified so as to gain good disturbance rejection ability.

Published in:

2008 Annual IEEE India Conference  (Volume:2 )

Date of Conference:

11-13 Dec. 2008