By Topic

Adaptive Array of Phase-Locked Fiber Collimators: Analysis and Experimental Demonstration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mikhail A. Vorontsov ; Comput. & Inf. Sci. Directorate, U.S. Army Res. Lab., Adelphi, MD ; Thomas Weyrauch ; Leonid A. Beresnev ; Gary W. Carhart
more authors

We discuss development and integration of a coherent fiber array system composed of densely packed fiber collimators with built-in capabilities for adaptive wavefront phase piston and tilt control at each fiber collimator. In this system, multi-channel fiber-integrated phase shifters are used for phase locking of seven fiber collimators and the precompensation of laboratory-generated turbulence-induced phase aberrations. Controllable x and y displacements of the fiber tips in the fiber collimator array provide additional adaptive compensation of the tip and tilt phase aberration components. An additional control system is utilized for equalization of the intensity of each of the fiber collimator beams. All three control systems are based on the stochastic parallel gradient descent optimization technique. The paper presents the first experimental results of adaptive dynamic phase distortion compensation with an adaptive phase-locked fiber collimator array system.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:15 ,  Issue: 2 )