Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Mode-kn Factor Analysis for Image Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shuicheng Yan ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Huan Wang ; Tu, J. ; Xiaoou Tang
more authors

In this corespondence, we study the extra-factor estimation problem with the assumption that the training image ensemble is expressed as an nth-order tensor with the nth-dimension characterizing all features for an image and other dimensions for different extra factors, such as illuminations, poses, and identities. To overcome the local minimum issue of conventional algorithms designed for this problem, we present a novel statistical learning framework called mode-kn Factor Analysis for obtaining a closed-form solution to estimating the extra factors of any test image. In the learning stage, for the kth (k ne = n) dimension of the data tensor, the mode-kn patterns are constructed by concatenating the feature dimension and the kth extra-factor dimension, and then a mode-kn factor analysis model is learnt based on the mode- kn patterns unfolded from the original data tensor. In the inference stage, for a test image, the mode classification of the kth dimension is performed within a probabilistic framework. The advantages of mode-kn factor analysis over conventional tensor analysis algorithms are twofold: (1) a closed-form solution, instead of iterative sub-optimal solution as conventionally, is derived for estimating the extra-factor mode of any test image; and (2) the classification capability is enhanced by interacting with the process of synthesizing data of all other modes in the k th dimension. Experiments on the Pointing'04 and CMU PIE databases for pose and illumination estimation both validate the superiority of the proposed algorithm over conventional algorithms for extra-factor estimation.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 3 )