By Topic

A New Projection-Based Neural Network for Constrained Variational Inequalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xing-Bao Gao ; Coll. of Math. & Inf. Sci., Shaanxi Normal Univ., Xian ; Li-Zhi Liao

This paper presents a new neural network model for solving constrained variational inequality problems by converting the necessary and sufficient conditions for the solution into a system of nonlinear projection equations. Five sufficient conditions are provided to ensure that the proposed neural network is stable in the sense of Lyapunov and converges to an exact solution of the original problem by defining a proper convex energy function. The proposed neural network includes an existing model, and can be applied to solve some nonmonotone and nonsmooth problems. The validity and transient behavior of the proposed neural network are demonstrated by some numerical examples.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 3 )