By Topic

Kernel-Matching Pursuits With Arbitrary Loss Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jason R. Stack ; Ocean Sensing & Syst. Applic. Div., Naval Res., Arlington, VA ; Gerald J. Dobeck ; Xuejun Liao ; Lawrence Carin

The purpose of this research is to develop a classifier capable of state-of-the-art performance in both computational efficiency and generalization ability while allowing the algorithm designer to choose arbitrary loss functions as appropriate for a give problem domain. This is critical in applications involving heavily imbalanced, noisy, or non-Gaussian distributed data. To achieve this goal, a kernel-matching pursuit (KMP) framework is formulated where the objective is margin maximization rather than the standard error minimization. This approach enables excellent performance and computational savings in the presence of large, imbalanced training data sets and facilitates the development of two general algorithms. These algorithms support the use of arbitrary loss functions allowing the algorithm designer to control the degree to which outliers are penalized and the manner in which non-Gaussian distributed data is handled. Example loss functions are provided and algorithm performance is illustrated in two groups of experimental results. The first group demonstrates that the proposed algorithms perform equivalent to several state-of-the-art machine learning algorithms on well-published, balanced data. The second group of results illustrates superior performance by the proposed algorithms on imbalanced, non-Gaussian data achieved by employing loss functions appropriate for the data characteristics and problem domain.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 3 )