By Topic

Scanner Identification Using Feature-Based Processing and Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nitin Khanna ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN ; Aravind K. Mikkilineni ; Edward J. Delp

Digital images can be obtained through a variety of sources including digital cameras and scanners. In many cases, the ability to determine the source of a digital image is important. This paper presents methods for authenticating images that have been acquired using flatbed desktop scanners. These methods use scanner fingerprints based on statistics of imaging sensor pattern noise. To capture different types of sensor noise, a denoising filterbank consisting four different denoising filters is used for obtaining the noise patterns. To identify the source scanner, a support vector machine classifier based on these fingerprints is used. These features are shown to achieve high classification accuracy. Furthermore, the selected fingerprints based on statistical properties of the sensor noise are shown to be robust under postprocessing operations, such as JPEG compression, contrast stretching, and sharpening.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:4 ,  Issue: 1 )