By Topic

Design of irregular LDPC codes for BIAWGN channels with SNR mismatch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saeedi, H. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON ; Banihashemi, A.H.

Belief propagation (BP) algorithm for decoding low-density parity-check (LDPC) codes over a binary input additive white Gaussian noise (BIAWGN) channel requires the knowledge of the signal-to-noise ratio (SNR) at the receiver to achieve its ultimate performance. An erroneous estimation or the absence of a perfect knowledge of the SNR at the decoder is referred to as "SNR mismatch". SNR mismatch can significantly degrade the performance of LDPC codes decoded by the BP algorithm. In this paper, using extrinsic information transfer (EXIT) charts, we design irregular LDPC codes that perform better (have a lower SNR threshold) in the presence of mismatch compared to the conventionally designed irregular LDPC codes that are optimized for zero mismatch. Considering that min-sum (MS) algorithm is the limit of BP with infinite SNR over-estimation, the EXIT functions generated in this work can also be used for the efficient analysis and design of LDPC codes under the MS algorithm.

Published in:

Communications, IEEE Transactions on  (Volume:57 ,  Issue: 1 )