By Topic

A Parallel Architecture for Discrete Relaxation Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Gu ; Department of Computer Science, University of Utah, Salt Lake City, UT 84112. ; Wei Wang ; Thomas C. Henderson

Discrete relaxation techniques have proven useful in solving a wide range of problems in digital signal and digital image processing, artificial intelligence, operations research, and machine vision. Much work has been devoted to finding efficient hardware architectures. This paper shows that a conventional hardware design for a Discrete Relaxation Algorithm (DRA) suffers from O(n2m3) time complexity and O(n2m2) space complexity. By reformulating DRA into a parallel computational tree and using a multiple tree-root pipelining scheme, time complexity is reduced to O(nm), while the space complexity is reduced by a factor of 2. For certain relaxation processing, the space complexity can even be decreased to O(nm). Furthermore, a technique for dynamic configuring an architectural wavefront is used which leads to an O(n) time highly concurrent DRA3 architecture.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-9 ,  Issue: 6 )