By Topic

A Method of Recognition of Arabic Cursive Handwriting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Almuallim, Hussein ; Department of Information and Computer Science, University of Petroleum and Minerals, Dhahran, Saudi Arabia. ; Yamaguchi, Shoichiro

In spite of the progress of machine recognition techniques of Latin, Kana, and Chinese characters over the two past decades, the machine recognition of Arabic characters has remained almost untouched. In this correspondence, a structural recognition method of Arabic cursively handwritten words is proposed. In this method, words are first segmented into strokes. Those strokes are then classified using their geometrical and topological properties. Finally, the relative position of the classified strokes are examined, and the strokes are combined in several steps into a string of characters that represents the recognized word. Experimental results on texts handwritten by two persons showed high recognition accuracy.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-9 ,  Issue: 5 )