By Topic

Decision-Directed Multivariate Empirical Bayes Classification with Nonstationary Priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wynn C. Stirling ; Department of Electrical Engineering, Brigham Young University, Provo, UT 84602. ; A. Lee Swindlehurst

A decision-directed learning strategy is presented to recursively estimate (i.e., track) the time-varying a priori distribution for a multivariate empirical Bayes adaptive classification rule. The problem is formulated by modeling the prior distribution as a finite-state vector Markov chain and using past decisions to estimate the time evolution of the state of this chain. The solution is obtained by implementing an exact recursive nonlinear estimator for the rate vector of a multivariate discrete-time point process representing the decisions. This estimator obtains the Doob decomposition of the decision process with respect to the a-field generated by all past decisions and corresponds to the nonlinear least squares estimate of the prior distribution. Monte Carlo simulation results are provided to assess the performance of the estimator.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-9 ,  Issue: 5 )