By Topic

New Methods for Matching 3-D Objects with Single Perspective Views

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Horaud, R. ; LIFIA, BP 68, 38402 Saint-Martin d''Hÿres, France.

In this paper we analyze the ability of a computer vision system to derive properties of the three-dimensional (3-D) physical world from viewing two-dimensional (2-D) images. We present a new approach which consists of a model-based interpretation of a single perspective image. Image linear features and linear feature sets are backprojected onto the 3-D space and geometric models are then used for selecting possible solutions. The paper treats two situations: 1) interpretation of scenes resulting from a simple geometric structure (orthogonality) in which case we seek to determine the orientation of this structure relatively to the viewer (three rotations) and 2) recognition of moderately complex objects whose shapes (geometrical and topological properties) are provided in advance. The recognition technique is limited to objects containing, among others, straight edges and planar faces. In the first case the computation can be carried out by a parallel algorithm which selects the solution that has received the largest number of votes (accumulation space). In the second case an object is uniquely assigned to a set of image features through a search strategy. As a by-product, the spatial position and orientation (six degrees of freedom) of each recognized object is determined as well. The method is valid over a wide range of perspective images and it does not require perfect low-level image segmentation. It has been successfully implemented for recognizing a class of industrial parts.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-9 ,  Issue: 3 )