By Topic

Estimating Components of Univariate Gaussian Mixtures Using Prony's Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Derin, H. ; Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003.

A new technique for estimating the component parameters of a mixture of univariate Gaussian distributions using the method of moments is presented. The method of moments basically involves equating the sample moments to the corresponding mixture moments expressed in terms of component parameters and solving these equations for the unknown parameters. These moment equations, however, are nonlinear in the unknown parameters, and heretofore, an analytic solution of these equations has been obtained only for two-component mixtures [2]. Numerical solutions also tend to be unreliable for more than two components, due to the large number of nonlinear equations and parameters to be solved for. In this correspondence, under the condition that the component distributions have equal variances or equal means, the nonlinear moment equations are transformed into a set of linear equations using Prony's method. The solution of these equations for the unknown parameters is analytically feasible and numerically reliable for mixtures with several components. Numerous examples using the proposed technique for two-, three-, and four-component mixtures are presented.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-9 ,  Issue: 1 )