By Topic

Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huertas, A. ; Intelligent Systems Group, Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089. ; Medioni, G.

We present a system that takes a gray level image as input, locates edges with subpixel accuracy, and links them into lines. Edges are detected by finding zero-crossings in the convolution of the image with Laplacian-of-Gaussian (LoG) masks. The implementation differs markedly from M.I.T.'s as we decompose our masks exactly into a sum of two separable filters instead of the usual approximation by a difference of two Gaussians (DOG). Subpixel accuracy is obtained through the use of the facet model [1]. We also note that the zero-crossings obtained from the full resolution image using a space constant ¿ for the Gaussian, and those obtained from the 1/n resolution image with 1/n pixel accuracy and a space constant of ¿/n for the Gaussian, are very similar, but the processing times are very different. Finally, these edges are grouped into lines using the technique described in [2].

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-8 ,  Issue: 5 )