Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eshera, M.A. ; Department of Artificial Intelligence, Martin Marietta Laboratories, Baltimore, MD 21227. ; Fu, King-Sun

This paper presents a powerful image understanding system that utilizes a semantic-syntactic (or attributed-synibolic) representation scheme in the form of attributed relational graphs (ARG's) for comprehending the global information contents of images. Nodes in the ARG represent the global image features, while the relations between those features are represented by attributed branches between their corresponding nodes. The extraction of ARG representation from images is achieved by a multilayer graph transducer scheme. This scheme is basically a rule-based system that uses a combination of model-driven and data-driven concepts in performing a hierarchical symbolic mapping of the image information content from the spatial-domain representation into a global representation. Further analysis and inter-pretation of the imagery data is performed on the extracted ARG representation. A distance measure between images is defined in terms of the distance between their respective ARG representations. The distance between two ARG's and the inexact matching of their respective components are calculated by an efficient dynamic programming technique. The system handles noise, distortion, and ambiguity in real-world images by two means, namely, through modeling and embedding them into the transducer's mapping rules, as well as through the appropriate cost of error-transformation for the inexact matching of the ARG image representation. Two illustrative experiments are presented to demonstrate some capabilities of the proposed system. Experiment I deals with locating objects in multiobject scenes, while Experiment II is concerned with target detection in SAR images.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-8 ,  Issue: 5 )