By Topic

A Model-Based Method for Rotation Invariant Texture Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rangasami L. Kashyap ; School of Electrical Engineering, Purdue University, West Lafayette, IN 47907. ; Alireza Khotanzad

This paper presents a new model-based approach for texture classification which is rotation invariant, i.e., the recognition accuracy is not affected if the orientation of the test texture is different from the orientation of the training samples. The method uses three statistical features, two of which are obtained from a new parametric model of the image called a ``circular symmetric autoregressive model.'' Two of the proposed features have physical interpretation in terms of the roughness and directionality of the texture. The results of several classification experiments on differently oriented samples of natural textures including both microtextures and macrotextures are presented.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-8 ,  Issue: 4 )