By Topic

On Edge Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vincent Torre ; Department of Physics, University of Genoa, Genoa, Italy, 16146. ; Tomaso A. Poggio

Edge detection is the process that attempts to characterize the intensity changes in the image in terms of the physical processes that have originated them. A critical, intermediate goal of edge detection is the detection and characterization of significant intensity changes. This paper discusses this part of the edge detection problem. To characterize the types of intensity changes derivatives of different types, and possibly different scales, are needed. Thus, we consider this part of edge detection as a problem in numerical differentiation. We show that numerical differentiation of images is an ill-posed problem in the sense of Hadamard. Differentiation needs to be regularized by a regularizing filtering operation before differentiation. This shows that this part of edge detection consists of two steps, a filtering step and a differentiation step. Following this perspective, the paper discusses in detail the following theoretical aspects of edge detection. 1) The properties of different types of filters-with minimal uncertainty, with a bandpass spectrum, and with limited support-are derived. Minimal uncertainty filters optimize a tradeoff between computational efficiency and regularizing properties. 2) Relationships among several 2-D differential operators are established. In particular, we characterize the relation between the Laplacian and the second directional derivative along the gradient. Zero crossings of the Laplacian are not the only features computed in early vision. 3) Geometrical and topological properties of the zero crossings of differential operators are studied in terms of transversality and Morse theory.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-8 ,  Issue: 2 )