By Topic

An Autoregressive Model Approach to Two-Dimensional Shape Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Susan R. Dubois ; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. ; Filson H. Glanz

In this paper, a method of classifying objects is reported that is based on the use of autoregressive (AR) model parameters which represent the shapes of boundaries detected in digitized binary images of the objects. The object identification technique is insensitive to object size and orientation. Three pattern recognition algorithms that assign object names to unlabelled sets of AR model parameters were tested and the results compared. Isolated object tests were performed on five sets of shapes, including eight industrial shapes (mostly taken from the recognition literature), and recognition accuracies of 100 percent were obtained for all pattern sets at some model order in the range 1 to 10. Test results indicate the ability of the technique developed in this work to recognize partially occluded objects. Processing-speed measurements show that the method is fast in the recognition mode. The results of a number of object recognition tests are presented. The recognition technique was realized with Fortran programs, Imaging Technology, Inc. image-processing boards, and a PDP 11/60 computer. The computer algorithms are described.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-8 ,  Issue: 1 )