By Topic

Uniqueness of the Gaussian Kernel for Scale-Space Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Babaud, Jean ; Schlumberger Computer Aided Systems, Palo Alto, CA 94304. ; Witkin, Andrew P. ; Baudin, Michel ; Duda, Richard O.

Scale-space filtering constructs hierarchic symbolic signal descriptions by transforming the signal into a continuum of versions of the original signal convolved with a kernal containing a scale or bandwidth parameter. It is shown that the Gaussian probability density function is the only kernel in a broad class for which first-order maxima and minima, respectively, increase and decrease when the bandwidth of the filter is increased. The consequences of this result are explored when the signal¿or its image by a linear differential operator¿is analyzed in terms of zero-crossing contours of the transform in scale-space.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-8 ,  Issue: 1 )