By Topic

Incorporating Fuzzy Membership Functions into the Perceptron Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Keller, James M. ; Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65201. ; Hunt, Douglas J.

The perceptron algorithm, one of the class of gradient descent techniques, has been widely used in pattern recognition to determine linear decision boundaries. While this algorithm is guaranteed to converge to a separating hyperplane if the data are linearly separable, it exhibits erratic behavior if the data are not linearly separable. Fuzzy set theory is introduced into the perceptron algorithm to produce a ``fuzzy algorithm'' which ameliorates the convergence problem in the nonseparable case. It is shown that the fuzzy perceptron, like its crisp counterpart, converges in the separable case. A method of generating membership functions is developed, and experimental results comparing the crisp to the fuzzy perceptron are presented.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-7 ,  Issue: 6 )