By Topic

Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Andrew K. C. Wong ; Department of Systems Design Engineering, University of Waterloo, Waterloo, Ont., Canada N2L 3G1. ; Manlai You

The notion of a random graph is formally defined. It deals with both the probabilistic and the structural aspects of relational data. By interpreting an ensemble of attributed graphs as the outcomes of a random graph, we can use its lower order distribution to characterize the ensemble. To reflect the variability of a random graph, Shannon's entropy measure is used. To synthesize an ensemble of attributed graphs into the distribution of a random graph (or a set of distributions), we propose a distance measure between random graphs based on the minimum change of entropy before and after their merging. When the ensemble contains more than one class of pattern graphs, the synthesis process yields distributions corresponding to various classes. This process corresponds to unsupervised learning in pattern classification. Using the maximum likelihood rule and the probability computed for the pattern graph, based on its matching with the random graph distributions of different classes, we can classify the pattern graph to a class.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-7 ,  Issue: 5 )