By Topic

Dynamic Occlusion Analysis in Optical Flow Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thompson, William B. ; Department of Computer Science, University of Minnesota, Minneapolis, MN 55455. ; Mutch, Kathleen M. ; Berzins, V.A.

Optical flow can be used to locate dynamic occlusion boundaries in an image sequence. We derive an edge detection algorithm sensitive to changes in flow fields likely to be associated with occlusion. The algorithm is patterned after the Marr-Hildreth zero-crossing detectors currently used to locate boundaries in scalar fields. Zero-crossing detectors are extended to identify changes in direction and/or magnitude in a vector-valued flow field. As a result, the detector works for flow boundaries generated due to the relative motion of two overlapping surfaces, as well as the simpler case of motion parallax due to a sensor moving through an otherwise stationary environment. We then show how the approach can be extended to identify which side of a dynamic occlusion boundary corresponds to the occluding surface. The fundamental principal involved is that at an occlusion boundary, the image of the surface boundary moves with the image of the occluding surface. Such information is important in interpreting dynamic scenes. Results are demonstrated on optical flow fields automatically computed from real image sequences.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-7 ,  Issue: 4 )