By Topic

On the Effect of Noise on the Moore-Penrose Generalized Inverse Associative Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stiles, G. S. ; Department of Electrical Engineering, Utah State University, Logan, UT 84322; Department of Electrical and Computer Engineering, Syracuse University, Syracuse, NY 13210. ; Denq, Dong-Lih

Monte Carlo simulations of the continuous Moore-Penrose generalized inverse associative memory (Kohonen [l]) have shown that the noise-to-signal ratio is improved on recall in the autoassociative case as long as the number of vector pairs stored is less than the number of components per vector. In the heteroassociative case, however, the noise-to-signal ratio may actually be greatly increased upon recall, particularly as the number of vector pairs stored approaches the number of components per vector. The increase in output noise-to-signal ratio in the heteroassociative case is found to be due to the fact that the inverse of the product of the key vector matrix with its transpose may increase without bound in spite of the fact that the key vectors are linearly independent.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-7 ,  Issue: 3 )