By Topic

Computing Geometric Properties of Images Represented by Linear Quadtrees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Samet, Hanan ; Department of Computer Science, University of Maryland, College Park, MD 20742. ; Tamminen, M.

The region quadtree is a hierarchical data structure that finds use in applications such as image processing, computer graphics, pattern recognition, robotics, and cartography. In order to save space, a number of pointerless quadtree representations (termed linear quadtrees) have been proposed. One representation maintains the nodes in a list ordered according to a preorder traversal of the quadtree. Using such an image representation and a graph definition of a quadtree, a general algorithm to compute geometric image properties such as the perimeter, the Euler number, and the connected components of an image is developed and analyzed. The algorithm differs from the conventional approaches to images represented by quadtrees in that it does not make use of neighbor finding methods that require the location of a nearest common ancestor. Instead, it makes use of a staircase-like data structure to represent the blocks that have been already processed. The worst-case execution time of the algorithm, when used to compute the perimeter, is proportional to the number of leaf nodes in the quadtree, which is optimal. For an image of size 2n × 2n, the perimeter algorithm requires only four arrays of 2n positions each for working storage. This makes it well suited to processing linear quadtrees residing in secondary storage. Implementation experience has confirmed its superiority to existing approaches to computing geometric properties for images represented by quadtrees.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-7 ,  Issue: 2 )