By Topic

A VLSI Systolic Architecture for Pattern Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ni, Lionel M. ; Department of Computer Science, Michigan State University, East Lansing, MI 48824. ; Jain, Anil K.

Cluster analysis is a valuable tool in exploratory pattern analysis, especially when very little prior information about the data is available. In unsupervised pattern recognition and image segmentation applications, clustering techniques play an important role. The squared-error clustering technique is the most popular one among different clustering techniques. Due to the iterative nature of the squared-error clustering, it demands substantial CPU time, even for modest numbers of patterns. Recent advances in VLSI microelectronic technology triggered the idea of implementing the squared-error clustering directly in hardware. A two-level pipelined systolic pattern clustering array is proposed in this paper. The memory storage and access schemes are designed to enable a rhythmic data flow between processing units. Each processing unit is pipelined to further enhance the system performance. The total processing time for each pass of pattern labeling and cluster center updating is essentially dominated by the time required to fetch the pattern matrix once. Detailed architectural configuration, system performance evaluation, and simulation experiments are presented. The modularity and the regularity of the system architecture make it suited for VLSI implementations.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-7 ,  Issue: 1 )