By Topic

Classification Error for a Very Large Number of Classes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fukunaga, Keinosuke ; School of Electrical Engineering, Purdue University, West Lafayette, IN 47907. ; Flick, Thomas E.

Classification error is analyzed for a situation where the number of possible classes may be on the order of a hundred or more. The error associated with classifying to a single class is shown to depend mainly on average nearest-neighbor distance between class means, noise level, and effective dimensionality of the class mean distribution and not much on other aspects of the distribution, noise correlation, or number of classes. Since single class error is large, separation of classes into groups is also explored. Group classification error has the same properties as single class error but the size of the error is moderated by the Bayes overlap between groups. Standard curves are provided to predict single class and group error. Also discussed are the effect of pattern blurring on classification error and the nearest-neighbor distance statistics throughout a distribution.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-6 ,  Issue: 6 )