By Topic

Fractal-Based Description of Natural Scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pentland, Alex P. ; Artificial Intelligence Center, SRI International, Menlo Park, CA 94025.

This paper addresses the problems of 1) representing natural shapes such as mountains, trees, and clouds, and 2) computing their description from image data. To solve these problems, we must be able to relate natural surfaces to their images; this requires a good model of natural surface shapes. Fractal functions are a good choice for modeling 3-D natural surfaces because 1) many physical processes produce a fractal surface shape, 2) fractals are widely used as a graphics tool for generating natural-looking shapes, and 3) a survey of natural imagery has shown that the 3-D fractal surface model, transformed by the image formation process, furnishes an accurate description of both textured and shaded image regions. The 3-D fractal model provides a characterization of 3-D surfaces and their images for which the appropriateness of the model is verifiable. Furthermore, this characterization is stable over transformations of scale and linear transforms of intensity. The 3-D fractal model has been successfully applied to the problems of 1) texture segmentation and classification, 2) estimation of 3-D shape information, and 3) distinguishing between perceptually ``smooth'' and perceptually ``textured'' surfaces in the scene.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-6 ,  Issue: 6 )