By Topic

Representation and Shape Matching of 3-D Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bir Bhanu ; Aeronutronic Division, Ford Aerospace and Communications Corporation, Newport Beach, CA 92660.

A three-dimensional scene analysis system for the shape matching of real world 3-D objects is presented. Various issues related to representation and modeling of 3-D objects are addressed. A new method for the approximation of 3-D objects by a set of planar faces is discussed. The major advantage of this method is that it is applicable to a complete object and not restricted to single range view which was the limitation of the previous work in 3-D scene analysis. The method is a sequential region growing algorithm. It is not applied to range images, but rather to a set of 3-D points. The 3-D model of an object is obtained by combining the object points from a sequence of range data images corresponding to various views of the object, applying the necessary transformations and then approximating the surface by polygons. A stochastic labeling technique is used to do the shape matching of 3-D objects. The technique matches the faces of an unknown view against the faces of the model. It explicitly maximizes a criterion function based on the ambiguity and inconsistency of classification. It is hierarchical and uses results obtained at low levels to speed up and improve the accuracy of results at higher levels. The objective here is to match the individual views of the object taken from any vantage point. Details of the algorithm are presented and the results are shown on several unknown views of a complicated automobile casting.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-6 ,  Issue: 3 )