By Topic

Entropy-Based Texture Analysis in the Spatial Frequency Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jernigan, M.E. ; Department of Systems Design, University of Waterloo, Waterloo, Ont., Canada N2L 3G1. ; D'Astous, F.

An approach which uses regional entropy measures in the spatial frequency domain for texture discrimination is presented. The measures provide texture discriminating information independent of that contained in the usual summed energy within based frequency domain features. Performance of the entropy features as measured by a between-to-within-class scatter criterion is comparable to that of traditional frequency domain features and gray level co-occurrence contrast features. A method of frequency scaling is introduced to enable the comparison of texture samples of different subimage size. The resulting regional entropy measures are subimage size-invariant subject to certain constraints which arise from properties of the discrete Fourier transform.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-6 ,  Issue: 2 )