By Topic

Fast Computation of the Difference of Low-Pass Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
James L. Crowley ; Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA 15213. ; Richard M. Stern

This paper defines the difference of low-pass (DOLP) transform and describes a fast algorithm for its computation. The DOLP is a reversible transform which converts an image into a set of bandpass images. A DOLP transform is shown to require O(N2) multiplies and produce O(N log(N)) samples from an N sample image. When Gaussian low-pass filters are used, the result is a set of images which have been convolved with difference of Gaussian (DOG) filters from an exponential set of sizes. A fast computation technique based on ``resampling'' is described and shown to reduce the DOLP transform complexity to O(N log(N)) multiplies and O(N) storage locations. A second technique, ``cascaded convolution with expansion,'' is then defined and also shown to reduce the computational cost to O(N log(N)) multiplies. Combining these two techniques yields an algorithm for a DOLP transform that requires O(N) storage cells and requires O(N) multiplies.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-6 ,  Issue: 2 )