By Topic

Game Theoretical Pattern Recognition: Application to Imperfect Noncooperative Learning and to Multiclass Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
L. F. Pau ; Battelle Memorial Institute, 7 Route de Drize, CH-1227 Carouge, Switzerland.

This paper studies in theory, and gives a solution to, the following concerns which may eventually be simultaneous: 1) obtain alternative classification decisions, ranked by some decreasing order of class membership probabilities; 2) imperfect teacher at the learning stage, or effects of labeling errors due to unsupervised learning by clustering; 3) noncooperative teacher, manipulating the a priori class probabilities; 4) unknown a priori class probabilities. These requirements are taken into account by considering a game between the recognition system and the teacher, in a game theoretical framework. Both players will ultimately select ``mixed strategies,'' which are probability distributions over the set of N alternative pattern classes, determined for each feature vector to be classified. This solution concept is interpreted in terms of the requirements 1)-4); numerical algorithms, as well as numerical examples are given with their solutions.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-6 ,  Issue: 1 )