By Topic

Curvature and Tangential Deflection of Discrete Arcs: A Theory Based on the Commutator of Scatter Matrix Pairs and Its Application to Vertex Detection in Planar Shape Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anderson, Ian M. ; Department of Mathematics, Utah State University, Logan, UT 84322. ; Bezdek, J.C.

This paper introduces a new theory for the tangential deflection and curvature of plane discrete curves. Our theory applies to discrete data in either rectangular boundary coordinate or chain coded formats: its rationale is drawn from the statistical and geometric properties associated with the eigenvalue-eigenvector structure of sample covariance matrices. Specifically, we prove that the nonzero entry of the commutator of a piar of scatter matrices constructed from discrete arcs is related to the angle between their eigenspaces. And further, we show that this entry is-in certain limiting cases-also proportional to the analytical curvature of the plane curve from which the discrete data are drawn. These results lend a sound theoretical basis to the notions of discrete curvature and tangential deflection; and moreover, they provide a means for computationally efficient implementation of algorithms which use these ideas in various image processing contexts. As a concrete example, we develop the commutator vertex detection (CVD) algorithm, which identifies the location of vertices in shape data based on excessive cummulative tangential deflection; and we compare its performance to several well established corner detectors that utilize the alternative strategy of finding (approximate) curvature extrema.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-6 ,  Issue: 1 )